Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hybrid robust and fast algorithm for three-dimensional phase unwrapping

Not Accessible

Your library or personal account may give you access

Abstract

We present a hybrid three-dimensional (3D) unwrapping algorithm that combines the strengths of two other fast and robust existing techniques. In particular, a branch-cut surface algorithm and a path- following method have been integrated in a symbiotic way, still keeping execution times within a range that permits their use in real-time applications that need a relatively fast solution to the problem. First, branch-cut surfaces are calculated, disregarding partial residue loops that end at the boundary of the 3D phase volume. These partial loops are then used to define a quality for each image voxel. Finally, unwrapping proceeds along a path determined by a minimum spanning tree (MST). The MST is built according to the quality of the voxels and avoids crossing the branch-cut surfaces determined at the first step. The resulting technique shows a higher robustness than any of the two methods used in isolation. On the one hand, the 3D MST algorithm benefits from the branch-cut surfaces, which endows it with a higher robustness to noise and open-ended wraps. On the other hand, incorrectly placed surfaces due to open loops at the boundaries in the branch-cut surface approach disappear.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Fast and robust three-dimensional best path phase unwrapping algorithm

Hussein S. Abdul-Rahman, Munther A. Gdeisat, David R. Burton, Michael J. Lalor, Francis Lilley, and Christopher J. Moore
Appl. Opt. 46(26) 6623-6635 (2007)

Clustering-based robust three-dimensional phase unwrapping algorithm

Miguel Arevalillo-Herráez, David R. Burton, and Michael J. Lalor
Appl. Opt. 49(10) 1780-1788 (2010)

Robust three-dimensional best-path phase-unwrapping algorithm that avoids singularity loops

Hussein Abdul-Rahman, Miguel Arevalillo-Herráez, Munther Gdeisat, David Burton, Michael Lalor, Francis Lilley, Christopher Moore, Daniel Sheltraw, and Mohammed Qudeisat
Appl. Opt. 48(23) 4582-4596 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved