Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Study on optical constants of ITO:Ag nanocompsite films

Not Accessible

Your library or personal account may give you access

Abstract

Indium tin oxide (ITO) thin films doped with a volume ratio of 0.3% Ag were prepared by sputtering and subsequently annealed in temperatures of 200, 260, 300, 360, and 400°C. The annealed films show increased transmittance in the visible wavelength range. The refractive index n and extinction coefficient k were extracted from simulating the transmittance spectra by using spectroscopic ellipsometry analysis method. The n values apparently increased in the whole wavelength range, but the k values were found to have almost no change in the near ultraviolet region after Ag doping. It is, therefore, proposed that the ITO:Ag combined with an ITO multilayer structure can be applied in special optical devices.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Fluorine-doped tin oxide films grown by pulsed direct current magnetron sputtering with an Sn target

Bo-Huei Liao, Chien-Cheng Kuo, Pin-Jen Chen, and Cheng-Chung Lee
Appl. Opt. 50(9) C106-C110 (2011)

AZO/Ag/AZO transparent conductive films: correlation between the structural, electrical, and optical properties and development of an optical model

Astrid Bingel, Olaf Stenzel, Philipp Naujok, Robert Müller, Svetlana Shestaeva, Martin Steglich, Ulrike Schulz, Norbert Kaiser, and Andreas Tünnermann
Opt. Mater. Express 6(10) 3217-3232 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.