Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Edge technique for direct detection of strain and temperature based on optical time domain reflectometry

Not Accessible

Your library or personal account may give you access

Abstract

A hybrid technique for real-time direct detection of strain and temperature along a single-mode fiber is proposed. The temperature is directly detected from the Raman backscattering in the time domain. To retrieve the strain profile from the Brillouin backscattering, an edge technique is introduced and a response function of the Fabry–Perot interferometer for the Brillouin backscattering is defined for the first time to our knowledge. The outgoing laser and the Brillouin backscattering are measured on different interference orders through different channels of the Fabry–Perot interferometer. A low- resolution reference channel and a high-resolution Brillouin channel are designed to keep both a high measurement sensitivity and a wide dynamic range. The measurement is based on detecting the bandwidth changes and the frequency shifts of the Brillouin backscattering; thus the resulting measurement is insensitive to the power fluctuation of the backscattering and the laser frequency jitter or drift. Neither time-consuming frequency scanning nor heavy data processing is needed, which makes real-time detection possible. The dynamic range of the edge technique can be increased substantially by using a piezoelectric tunable and capacitive-servo-stabilized Fabry–Perot interferometer. We highlight the potential of this technique by numerical simulations. Given that the uncertainty of the temperature measurement is 0.5°C and that the spatial and temporal resolutions are 10cm and 1s, the strain uncertainty is less than 20με within a 2km distance when the strain is below 0.4%, and it is not more than 110με within a 4km distance when the strain is below 0.6%.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Distributed strain and temperature fast measurement in Brillouin optical time-domain reflectometry based on double-sideband modulation

Jianqin Peng, Yuangang Lu, Yuyang Zhang, and Zelin Zhang
Opt. Express 30(2) 1511-1520 (2022)

Temperature-strain discrimination in distributed optical fiber sensing using phase-sensitive optical time-domain reflectometry

Xin Lu, Marcelo A. Soto, and Luc Thévenaz
Opt. Express 25(14) 16059-16071 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (27)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved