Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Scintillations of partially coherent multiple Gaussian beams in turbulence

Not Accessible

Your library or personal account may give you access

Abstract

For an incidence composed of partially coherent multiple Gaussian beams, Huygens–Fresnel principle-based on-axis scintillation index is formulated in a weakly turbulent homogeneous horizontal atmospheric path. Our general formulation is applied to two examples of partially coherent annular and partially coherent flat-topped Gaussian beams. Compared to partially coherent single Gaussian beam scintillations, annular beam scintillations seem to possess higher values for all partial coherence levels, whereas flat-topped Gaussian beam intensity fluctuations are slightly larger, especially at lower coherence levels and at larger source sizes. At the same source partial coherence, annular beams exhibit smaller scintillations for larger ring sizes. For flat-topped Gaussian beams, except for very small and very large source sizes, as the number of Gaussian beams forming the flatness increases, intensity fluctuations also increase, a trend applicable for different degrees of coherence. A trend valid for both single and multiple Gaussian incidence, except for certain annular beams of large primary beam sizes, is that the scintillations decrease as the source becomes less coherent. Being applicable for all degrees of source coherences, for both beams examined, scintillations increase steadily as the Rytov plane wave scintillation index increases.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Scintillations of incoherent flat-topped Gaussian source field in turbulence

Yahya Baykal and Halil T. Eyyuboǧlu
Appl. Opt. 46(22) 5044-5050 (2007)

Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence

Masoud Yousefi, Shole Golmohammady, Ahmad Mashal, and Fatemeh Dabbagh Kashani
J. Opt. Soc. Am. A 32(11) 1982-1992 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved