Abstract
A more computationally tractable model of the kinoform lenses in hybrid refractive-diffractive systems is proposed by taking into consideration the actual phase function of the kinoform lenses for every wavelength. The principle and outline of this modified model are explained. We compare the results of this approach with the more conventional single order calculation and with the standard diffraction-order expansion by using a practical hybrid optical system example.
© 2008 Optical Society of America
Full Article |
PDF Article
More Like This
Kinoform Lenses
J. A. Jordan, P. M. Hirsch, L. B. Lesem, and D. L. Van Rooy
Appl. Opt. 9(8) 1883-1887 (1970)
References
You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Cited By
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Equations (13)
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription
Metrics
You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.
Contact your librarian or system administrator
or
Login to access OSA Member Subscription