Abstract

A visible wide field multispectral system for comprehensive imaging of skin chromophores and blood vessels has been implemented, and an inhomogeneous Monte Carlo model of photon migration with randomly distributed blood vessels embedded in dermis has been developed. Predetermined nonlinear transforms have been obtained to address the nonlinear interdependent relationship among diffusive reflectance spectra, skin physiology properties, and geometry. For validation, in addition to real skin experiments and phantoms experiments, two alternative methods for blood vessel imaging have been used on the same set of subjects to compensate for the lack of ground truth for skin subsurface imaging.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Hyperspectral imaging of human skin aided by artificial neural networks

Evgeny Zherebtsov, Viktor Dremin, Alexey Popov, Alexander Doronin, Daria Kurakina, Mikhail Kirillin, Igor Meglinski, and Alexander Bykov
Biomed. Opt. Express 10(7) 3545-3559 (2019)

Depth visualization of a local blood region in skin tissue by use of diffuse reflectance images

Izumi Nishidate, Yoshihisa Aizu, and Hiromichi Mishina
Opt. Lett. 30(16) 2128-2130 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics