Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Adaptive optics performance model for optical interferometry

Not Accessible

Your library or personal account may give you access

Abstract

The optical interferometry community has discussed the possibility of using adaptive optics (AO) on apertures much larger than the atmospheric coherence length in order to increase the sensitivity of an interferometer, although few quantitative models have been investigated. The aim of this paper is to develop an analytic model of an AO-equipped interferometer and to use it to quantify, in relative terms, the gains that may be achieved over an interferometer equipped only with tip–tilt correction. Functional forms are derived for wavefront errors as a function of spatial and temporal coherence scales and flux and applied to the AO and tip–tilt cases. In both cases, the AO and fringe detection systems operate in the same spectral region, with the sharing ratio and subaperture size as adjustable parameters, and with the interferometer beams assumed to be spatially filtered after wavefront correction. It is concluded that the use of AO improves the performance of the interferometer in three ways. First, at the optimal aperture size for a tip–tilt system, the AO system is as much as 50% more sensitive. Second, the sensitivity of the AO system continues to improve with increasing aperture size. And third, the signal-to-noise ratio of low-visibility fringes in the bright-star limit is significantly improved over the tip–tilt case.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Performance of the Keck Observatory adaptive-optics system

Marcos A. van Dam, David Le Mignant, and Bruce A. Macintosh
Appl. Opt. 43(29) 5458-5467 (2004)

Using adaptive optics to enhance Michelson interferometry

G. C. Loos
Appl. Opt. 31(31) 6632-6636 (1992)

Modeling low order aberrations in laser guide star adaptive optics systems

Richard M. Clare, Marcos A. van Dam, and Antonin H. Bouchez
Opt. Express 15(8) 4711-4725 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.