Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

2 Gbit∕s 0.5 μm complementary metal-oxide semiconductor optical transceiver with event-driven dynamic power-on capability

Not Accessible

Your library or personal account may give you access

Abstract

A 2Gb/s 0.5  μm complementary metal-oxide semiconductor optical transceiver designed for board- or backplane level power-efficient interconnections is presented. The transceiver supports optical wake-on-link (OWL), an event-driven dynamic power-on technique. Depending on external events, the transceiver resides in either the active mode or the sleep mode and switches accordingly. The active-to-sleep transition shuts off the normal, gigabit link and turns on dedicated circuits to establish a low-power (1 .8 mW), low data rate (less than 100Mbits/s) link. In contrast the normal, gigabit link consumes over 100 mW. Similarly the sleep-to-active transition shuts off the low-power link and turns on the normal, gigabit link. The low-power link, sharing the same optical channel with the normal, gigabit link, is used to achieve transmitter∕receiver pair power-on synchronization and greatly reduces the power consumption of the transceiver. A free-space optical platform was built to evaluate the transceiver performance. The experiment successfully demonstrated the event-driven dynamic power-on operation. To our knowledge, this is the first time a dynamic power-on scheme has been implemented for optical interconnects. The areas of the circuits that implement the low-power link are approximately one-tenth of the areas of the gigabit link circuits.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Power-efficient dual-rate optical transceiver

Yongrong Zuo, Fouad E. Kiamiley, Xiaoqing Wang, Ping Gui, Jeremy Ekman, Xingle Wang, Michael J. McFadden, and Michael W. Haney
Appl. Opt. 44(33) 7112-7124 (2005)

Performance-based adaptive power optimization for digital optical interconnects

Xiaoqing Wang, Fouad Kiamilev, George C. Papen, Jeremy Ekman, Ping Gui, Michael J. McFadden, Joseph C. Deroba, Michael W. Haney, and Charles Kuznia
Appl. Opt. 44(29) 6240-6252 (2005)

0.18-μm complementary metal-oxide semiconductor push-pull vertical-cavity surface-emitting laser driver operating at 2.5 Gb/s with symmetric rising and falling edges

David V. Plant, Alan E. L. Chuah, Michael B. Venditti, and Andrei D. Isac
Appl. Opt. 43(13) 2730-2733 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (25)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.