Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Particle-size and velocity measurements in flowing conditions using dynamic light scattering

Not Accessible

Your library or personal account may give you access

Abstract

The noninvasive optical technique of dynamic light scattering (DLS) is routinely used to characterize dilute and transparent submicrometer particle dispersions in laboratory environments. A variety of industrial and biological applications would, however, greatly benefit from on-line monitoring of dispersions under flowing conditions. We present a model experiment to study flowing dispersions of polystyrene latex particles of varying sizes under varying flow conditions by using a newly developed fiber-optic DLS probe. A modified correlation function proposed in an earlier study is applied to the analysis of extracting the size and velocity of laminar flowing particulate dispersions. The complementary technique of laser Doppler velocimetry is also used to measure the speed of moving particles to confirm the DLS findings.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Application of dynamic light scattering to the study of small marine particles

Dariusz Stramski and Marián Sedlák
Appl. Opt. 33(21) 4825-4834 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved