Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modeling gain-medium diffraction in super-Gaussian coupled unstable laser cavities

Not Accessible

Your library or personal account may give you access

Abstract

The diffractive effects of a single laser rod in an unstable super-Gaussian coupled cavity are modeled for a range of cavity configurations, with an intracavity, zero-thickness aperture. After fundamental mode propagation through a maximally flat output coupler, beam quality (M2) and far-field power loss values are related. Beam quality is most sensitive to cavity magnification and aperture Fresnel number, both correlated to the aperture-equivalent Fresnel number. In contrast, variation of M2 with aperture position is sufficiently conservative to predict the intensity profile of a solid-state laser with a typical gain length, in good agreement with experimental data.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Unstable laser resonators with super-Gaussian mirrors

S. De Silvestri, P. Laporta, V. Magni, O. Svelto, and B. Majocchi
Opt. Lett. 13(3) 201-203 (1988)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.