Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Detection of cortical activation with time-resolved diffuse optical methods

Not Accessible

Your library or personal account may give you access

Abstract

Simulations based on diffusion theory that use a finite-element method and rely on an magnetic resonance imaging head model suggest that time-resolved diffuse optical techniques could provide information about the depth at which variations in perfusion take place and improve the detection of cortical activation. Experimental investigations were performed with sequentially driven picosecond laser diodes and an eight-channel time-correlated single-photon-counting detection system. The experimental results obtained for activation in the motor cortex, and for the Valsalva maneuver, confirm our assumptions and are in good agreement with the simulated data.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Diffuse optical cortical mapping using the boundary element method

Josias Elisee, Adam Gibson, and Simon Arridge
Biomed. Opt. Express 2(3) 568-578 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved