Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Measurement of particle-size distribution and concentration in heterogeneous turbid media with multispectral diffuse optical tomography

Not Accessible

Your library or personal account may give you access

Abstract

We present a method that is capable of extracting particle-size distribution (PSD) and concentration in heterogeneous turbid media by use of multispectral diffuse optical tomography (MSDOT). After the spectroscopic scattering images of the heterogeneous turbid media are obtained with MSDOT, the morphologic information of particles in the heterogeneities is recovered with an iterative regularized reconstruction algorithm based on Mie scattering theory when a particular form of PSD is assumed (Gaussian distribution is used in this study). The method described is tested and evaluated with both simulated and experimental data. The simulations are intended to test the sensitivity of the overall approach to noise effect. A series of phantom experiments are conducted with our newly developed ten-wavelength MSDOT system. Polystyrene microsphere suspensions contain particles of varying size from 2 to 6 μm as targets are embedded in a scattering background medium in these experiments. To achieve optimized results from experimental data, we developed a data preprocessing method for MSDOT as well as a scheme for calibrating scattering spectra. The results from both simulations and experiments show that the particle mean size and concentration can be reconstructed with acceptable accuracy, whereas the recovery of the standard deviation is sensitive to noise effect and can be as large as 86% from the experimental data.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Multispectral diffuse optical tomography with absorption and scattering spectral constraints

Changqing Li, Stephen R. Grobmyer, Lin Chen, Qizhi Zhang, Laurie L. Fajardo, and Huabei Jiang
Appl. Opt. 46(34) 8229-8236 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved