Abstract

A highly sensitive fiber-optic sensor based on optical beam deflection is applied for investigating the propagation of a laser-induced plasma shock wave, the oscillation of a cavitation bubble diameter, and the development of a bubble-collapse-induced shock wave when a Nd:YAG laser pulse is focused upon an aluminum surface in water. By the sequence of experimental waveforms detected at different distances, the attenuation properties of the plasma shock wave and of the bubble-collapse-induced shock wave are obtained. Besides, based on characteristic signals, both the maximum and the minimum bubble radii at each oscillation cycle are determined, as are the corresponding oscillating periods.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cavitation induced by shock wave focusing in eye-like experimental configurations

Tomaž Požar and Rok Petkovšek
Biomed. Opt. Express 11(1) 432-447 (2020)

Optodynamic characterization of the shock waves after laser-induced breakdown in water

Rok Petkovšek, Janez Možina, and Griša Močnik
Opt. Express 13(11) 4107-4112 (2005)

Experimental investigation on multiple breakdown in water induced by focused nanosecond laser

Lei Fu, Siqi Wang, Jing Xin, Shijia Wang, Cuiping Yao, Zhenxi Zhang, and Jing Wang
Opt. Express 26(22) 28560-28575 (2018)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription