Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames

Not Accessible

Your library or personal account may give you access

Abstract

Two-photon laser-induced fluorescence (LIF) imaging of atomic oxygen is investigated in premixed hydrogen and methane flames with nanosecond and picosecond pulsed lasers at 226 nm. In the hydrogen flame, the interference from photolysis is negligible compared with the LIF signal from native atomic oxygen, and the major limitations on quantitative measurements are stimulated emission and photoionization. Excitation with a nanosecond laser is advantageous in the hydrogen flames, because it reduces the effects of stimulated emission and photoionization. In the methane flames, however, photolytic interference is the major complication for quantitative O-atom measurements. A comparison of methane and hydrogen flames indicates that vibrationally excited CO2 is the dominant precursor for laser-generated atomic oxygen. In the methane flames, picosecond excitation offers a significant advantage by dramatically reducing the photolytic interference. The prospects for improved O-atom imaging in hydrogen and hydrocarbon flames are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

Corrections

Jonathan H. Frank, Xiangling Chen, Brian D. Patterson, and Thomas B. Settersten, "Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames: erratum," Appl. Opt. 43, 3356-3356 (2004)
https://opg.optica.org/ao/abstract.cfm?uri=ao-43-16-3356

More Like This
Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames

Waruna D. Kulatilaka, Brian D. Patterson, Jonathan H. Frank, and Thomas B. Settersten
Appl. Opt. 47(26) 4672-4683 (2008)

Comparison of nanosecond and picosecond excitation for two-photon laser-induced fluorescence imaging of atomic oxygen in flames: erratum

Jonathan H. Frank, Xiangling Chen, Brian D. Patterson, and Thomas B. Settersten
Appl. Opt. 43(16) 3356-3356 (2004)

Quantitative femtosecond, two-photon laser-induced fluorescence of atomic oxygen in high-pressure flames

K. Arafat Rahman, Venkat Athmanathan, Mikhail N. Slipchenko, Sukesh Roy, James R. Gord, Zhili Zhang, and Terrence R. Meyer
Appl. Opt. 58(8) 1984-1990 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.