Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modeling microlenses by use of vectorial field rays and diffraction integrals

Not Accessible

Your library or personal account may give you access

Abstract

A nonparaxial vector-field method is used to describe the behavior of low-f-number microlenses by use of ray propagation, Fresnel coefficients and the solution of Maxwell equations to determine the field propagating through the lens boundaries, followed by use of the Rayleigh-Sommerfeld method to find the diffracted field behind the lenses. This approach enables the phase, the amplitude, and the polarization of the diffracted fields to be determined. Numerical simulations for a convex-plano lens illustrate the effects of the radii of curvature, the lens apertures, the index of refraction, and the wavelength on the variations of the focal length, the focal plane field distribution, and the cross polarization of the field in the focal plane.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of a cylindrical microlens array with long focal depth by a rigorous boundary-element method and scalar approximations

Jia-Sheng Ye, Bi-Zhen Dong, Ben-Yuan Gu, and Shu-Tian Liu
Appl. Opt. 43(27) 5183-5192 (2004)

Vectorial ray-based diffraction integral

Birk Andreas, Giovanni Mana, and Carlo Palmisano
J. Opt. Soc. Am. A 32(8) 1403-1424 (2015)

Improved first Rayleigh–Sommerfeld method for analysis of cylindrical microlenses with small f-numbers

Jia-Sheng Ye, Ben-Yuan Gu, Bi-Zhen Dong, and Shu-Tian Liu
Opt. Lett. 29(20) 2345-2347 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (35)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved