Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

In vivo breast imaging with diffuse optical tomography based on higher-order diffusion equations

Not Accessible

Your library or personal account may give you access

Abstract

We report on in vivo absorption and scattering imaging of a human breast cyst and implant, using a reconstruction algorithm based on our third-order diffusion equations. To validate these in vivo images, a series of phantom experiments were conducted, in which we used low-absorbing and low-scattering heterogeneities to mimic a breast cyst or implant. These heterogeneities or targets were composed of pure water or a mixture of water and very dilute Intralipid (0.05% and 0.1%). The phantom experiments confirmed the quantitative imaging capability of our improved algorithm for reconstructing heterogeneities where the conventional diffusion approximation is inadequate. Pilot clinical results from female volunteers indicate that enhanced diffuse optical tomography can quantitatively image findings such as breast cysts or implants in which the absorption and scattering coefficients are usually low.

© 2003 Optical Society of America

Full Article  |  PDF Article
More Like This
Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results

Hamid Dehghani, Brian W. Pogue, Steven P. Poplack, and Keith D. Paulsen
Appl. Opt. 42(1) 135-145 (2003)

Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging

Troy O. McBride, Brian W. Pogue, Shudong Jiang, Ulf L. Österberg, Keith D. Paulsen, and Steven P. Poplack
Opt. Lett. 26(11) 822-824 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved