Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fringe-imaging Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar

Not Accessible

Your library or personal account may give you access

Abstract

The theoretical performance of a Mach-Zehnder interferometer used as a spectral analyzer for wind-speed measurement by direct-detection Doppler lidar is presented. The interferometer is optimized for the measurement of wind velocity from the signal that is backscattered by the molecules. In the proposed fringe-imaging Mach-Zehnder (FIMZ) interferometer, a pattern of equally spaced linear fringes is formed and detected by two conventional detector linear arrays. Assuming a pure molecular signal with Gaussian spectral profile, an analytic expression for the standard deviation of the measurement error is obtained and compared with the Cramer-Rao lower bound given by an ideal spectral analyzer (ISA) in the case of shot-noise-limited signal. The FIMZ measurement error is shown to be 2.3 times that of the ISA and is comparable with the error given by previously developed multichannel spectral analyzers that are based on Fabry-Perot interferometers that, in contrast, have the disadvantages of producing unequally spaced circular fringes and requiring dedicated detectors. The optimal path difference for a FIMZ operating at 355 nm is approximately 3 cm. The interferometer is shown to match important lidar beam étendues without significant performance reduction.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Wind-velocity lidar measurements by use of a Mach–Zehnder interferometer, comparison with a Fabry–Perot interferometer

Didier Bruneau, Anne Garnier, Albert Hertzog, and Jacques Porteneuve
Appl. Opt. 43(1) 173-182 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved