Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fluorescence diagnostics of oil pollution in coastal marine waters by use of artificial neural networks

Not Accessible

Your library or personal account may give you access

Abstract

We discuss the problems with and the real possibilities of determining oil pollution in situ in coastal marine waters with fluorescence spectroscopy and of using artificial neural networks for data interpretation. In general, the fluorescence bands of oil and aquatic humic substance overlap. At oil concentrations in water from a few to tens of micrograms per liter, the intensity of oil fluorescence is considerably lower than that of humic substances at concentrations that typically are present in coastal waters. Therefore it is necessary to solve the problem of separating the small amount of oil fluorescence from the humic substance background in the spectrum. The problem is complicated because of possible interactions between the components and variations in the parameters of the fluorescence bands of humic substances and oil in water. Fluorescence spectra of seawater samples taken from coastal areas of the Black Sea, samples prepared in the laboratory, and numerically simulated spectra were processed with an artificial neural network. The results demonstrate the possibility of estimating oil concentrations with an accuracy of a few micrograms per liter in coastal waters also in cases in which the contribution from other organic compounds, primarily humic substances, to the fluorescence spectrum exceeds that of oil by 2 orders of magnitude and more.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Construction of a predictive model for concentration of nickel and vanadium in vacuum residues of crude oils using artificial neural networks and LIBS

José L. Tarazona, Jáder Guerrero, Rafael Cabanzo, and E. Mejía-Ospino
Appl. Opt. 51(7) B108-B114 (2012)

Optical remote sensing of marine constituents in coastal waters: a feasibility study

Øyvind Frette, Jakob J. Stamnes, and Knut Stamnes
Appl. Opt. 37(36) 8318-8326 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.