Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effect of ambient temperature on Robertson–Berger-type erythemal dosimeters

Not Accessible

Your library or personal account may give you access

Abstract

To quantify the effect of ambient temperature on the voltage signal of Solar Light UV-Biometers, spectral response functions of two instruments were determined in the laboratory under various external temperature conditions. Despite the biometer’s internal temperature stabilization, a temperature increase of 20 °C at the outside of an instrument’s housing resulted in a reduction of the instrument’s spectral response by as much as 10% in the UVB range and by as much as a factor of 2 in the UVA range, depending on the individual instrument and on its internal relative humidity. The significance of this effect for outdoor measurements is demonstrated by data from an intercomparison campaign of erythemal radiometers in Thessaloniki, Greece, organized by the Laboratory of Atmospheric Physics (Aristotle University of Thessaloniki), the Cooperation in Science and Technology (European Commission), and the World Meteorological Organization. On 16 September 1999, 12 of 16 Solar Light Biometers showed significant diurnal variation in their sensitivity (as much as 10% for some individual instruments), which can be explained through a heating of the instruments’ housings due to direct solar radiation.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Calibration and uncertainty estimation of erythemal radiometers in the Argentine Ultraviolet Monitoring Network

Alexander Cede, Eduardo Luccini, Liliana Nuñez, Rubén D. Piacentini, and Mario Blumthaler
Appl. Opt. 41(30) 6341-6350 (2002)

UV-B Robertson–Berger meter characterization and field calibration

R. G. Grainger, Reid E. Basher, and R. L. McKenzie
Appl. Opt. 32(3) 343-349 (1993)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.