Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Transfer-matrix approach based on modal analysis for modeling corrugated long-period fiber gratings

Not Accessible

Your library or personal account may give you access

Abstract

A transfer-matrix method is developed for modeling a corrugated long-period fiber grating. Cladding-mode resonance in such a corrugated structure can be controlled by the applied tensile stress based on the photoelastic effect. A first-order vectorial perturbation expansion is used to derive the mode fields of the two basic regions under the strain-induced index perturbation. Because the etched cladding radius is much smaller than the unetched radius, the effect of the corrugated structure on cladding modes cannot be treated as a small perturbation. Thus the conventional coupled-mode theory is inadequate for the modeling of such a structure. Based on a self-consistent mode-matching technique, mode coupling within the corrugated structure can be described by a set of transfer matrices. We apply the formulation to the calculation of the transmission spectra of a corrugated long-period grating and compare the calculated with the experimental results. The transfer-matrix approach is found to account well for the features of the transmission spectra of the corrugated long-period gratings.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Wavelength shifts of cladding-mode resonance in corrugated long-period fiber gratings under torsion

Oleg V. Ivanov and Lon A. Wang
Appl. Opt. 42(13) 2264-2272 (2003)

Embedded corrugated long-period fiber gratings for sensing applications

Hsiao-Yuh Wang, Shih-Min Chuo, Chih-Yu Huang, and Lon A. Wang
Appl. Opt. 51(10) 1453-1458 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.