Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermal luminescence water monitor

Not Accessible

Your library or personal account may give you access

Abstract

A thermal luminescence (TL) spectroscopy method for detecting organic impurities in water solution is presented. Infrared emissions by the dissolved organic matter are measurable, once a thermal gradient between it and the water medium is established, at those TL frequencies that are absorbed by the contaminant, following irradiation by a pulsed microwave beam. This detection window of opportunity closes as the liquid reaches thermal equilibrium at elevated temperatures and on collapse of the gradient. TL radiance liberated by a suspected contaminated water sample is scanned interferometrically about the maximum thermal gradient event, where N interferograms are acquired and grouped into contiguous sets of two, with N/2 interferogram elements per set. The coadded averages of these sets enhance the sensitivity of measurement to a small variance in emissivity and are Fourier transformed, and the adjacent spectra are subtracted. The difference spectrum is preprocessed with linear baseline, noise filtration, scaling, and parity operators to reveal a clear emissions band signature of the solute of dimethylmethylphosphonate to concentrations of parts per 103 and less. An artificial neural network facilitates detection of the contaminant by pattern recognition of the contaminant’s infrared band signature.

© 2001 Optical Society of America

Full Article  |  PDF Article
More Like This
Thermal luminescence sensor for ground-path contamination detection

Arthur H. Carrieri, Irving F. Barditch, David J. Owens, Erik S. Roese, Pascal I. Lim, and Michael V. Talbard
Appl. Opt. 38(27) 5880-5886 (1999)

Surface contamination detection by means of near-infrared stimulation of thermal luminescence

Arthur H. Carrieri and Erik S. Roese
Appl. Opt. 45(4) 736-743 (2006)

Thermal luminescence spectroscopy chemical imaging sensor

Arthur H. Carrieri, Tudor N. Buican, Erik S. Roese, James Sutter, and Alan C. Samuels
Appl. Opt. 51(28) 6765-6780 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.