Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Accuracy and uncertainty of single-shot, nonresonant laser-induced thermal acoustics

Not Accessible

Your library or personal account may give you access

Abstract

We study the accuracy and uncertainty of single-shot nonresonant laser-induced thermal acoustics measurements of the speed of sound and the thermal diffusivity in unseeded atmospheric air from electrostrictive gratings as a function of the laser power settings. For low pump energies, the measured speed of sound is too low, which is due to the influence of noise on the numerical data analysis scheme. For pump energies comparable to and higher than the breakdown energy of the gas, the measured speed of sound is too high. This is an effect of leaving the acoustic limit, and instead creating finite-amplitude density perturbations. The measured thermal diffusivity is too large for high noise levels but it decreases below the predicted value for high pump energies. The pump energy where the error is minimal coincides for the speed of sound and for the thermal diffusivity measurements. The errors at this minimum are 0.03% and 1%, respectively. The uncertainties for the speed of sound and the thermal diffusivity decrease monotonically with signal intensity to 0.25% and 5%, respectively.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser-induced thermal-acoustic velocimetry with heterodyne detection

Stefan Schlamp, Eric B. Cummings, and Thomas H. Sobota
Opt. Lett. 25(4) 224-226 (2000)

Simultaneous velocimetry and thermometry of air by use of nonresonant heterodyned laser-induced thermal acoustics

Roger C. Hart, R. Jeffrey Balla, and G. C. Herring
Appl. Opt. 40(6) 965-968 (2001)

Nonresonant referenced laser-induced thermal acoustics thermometry in air

Roger C. Hart, R. Jeffrey Balla, and Gregory C. Herring
Appl. Opt. 38(3) 577-584 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved