Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tunable and frequency-stabilized diode laser with a Doppler-free two-photon Zeeman lock

Not Accessible

Your library or personal account may give you access

Abstract

We describe frequency locking of a diode laser to a two-photon transition of rubidium using the Zeeman modulation technique. We locked and tuned the laser frequency by modulating and shifting the two-photon transition frequency with ac and dc magnetic fields. We achieved a linewidth of 500 kHz and continuous tunability over 280 MHz with no laser frequency modulation.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Self-aligned extended-cavity diode laser stabilized by the Zeeman effect on the cesium D2 line

Steve Lecomte, Emmanuel Fretel, Gaetano Mileti, and Pierre Thomann
Appl. Opt. 39(9) 1426-1429 (2000)

Frequency-stabilized 1520-nm diode laser with rubidium 5S1/2 → 7S1/2 two-photon absorption

Hsiang-Chen Chui, Yi-Wei Liu, Jow-Tsong Shy, Sen-Yen Shaw, Rostislav V. Roussev, and Martin M. Fejer
Appl. Opt. 43(34) 6348-6351 (2004)

Frequency stabilization method for transition to a Rydberg state using Zeeman modulation

Fengdong Jia, Jian Zhang, Lei Zhang, Fei Wang, Jiong Mei, Yonghong Yu, Zhiping Zhong, and Feng Xie
Appl. Opt. 59(7) 2108-2113 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.