Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser-induced incandescence for soot particle size measurements in premixed flat flames

Not Accessible

Your library or personal account may give you access

Abstract

Measurements of soot properties by means of laser-induced incandescence (LII) and combined scattering–extinction were performed in well-characterized premixed ethylene–air flames. In particular, the possibility of using LII as a tool for quantitative particle sizing was investigated. Particle sizes were evaluated from the temporal decay of the LII signal combined with heat balance modeling of laser-heated particles, and these sizes were compared with the particle sizes deduced from scattering–extinction measurements based on isotropic sphere theory. The correspondence was good early in the soot-formation process but less good at later stages, possibly because aggregation to clusters began to occur. A critical analysis has been made of how uncertainties in different parameters, both experimental and in the model, affect the evaluated particle sizes for LII. A sensitivity analysis of the LII model identified the ambient-flame temperature as a major source of uncertainty in the evaluated particle size, a conclusion that was supported by an analysis based on temporal LII profiles.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser-induced incandescence for soot diagnostics at high pressures

Max Hofmann, Wolfgang G. Bessler, Christof Schulz, and Helga Jander
Appl. Opt. 42(12) 2052-2062 (2003)

Size distributions of nanoscaled particles and gas temperatures from time-resolved laser-induced-incandescence measurements

Thilo Lehre, Beate Jungfleisch, Rainer Suntz, and Henning Bockhorn
Appl. Opt. 42(12) 2021-2030 (2003)

Soot volume fraction and particle size measurements with laser-induced incandescence

B. Mewes and J. M. Seitzman
Appl. Opt. 36(3) 709-717 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved