Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Method for the reduction of signal-induced noise in photomultiplier tubes

Not Accessible

Your library or personal account may give you access

Abstract

A new method to reduce photomultiplier tube detector signal-induced noise (SIN) in a lidar system is successfully demonstrated. A metal ring electrode placed external to the photomultiplier tube photocathode is pulsed during the intense near-field lidar return with a potential between 15 and 500 V, resulting in a significant reduction in SIN. The effect of the metal ring voltage on the decay time constant and the magnitude of a simulated lidar signal is presented. Optimal experimental conditions for the use of this device in lidar receivers, such that the lidar decay time constant is not affected, are determined. Mechanisms for this SIN suppression system are discussed in detail, and data were recorded to show that the voltage on the metal ring functions by altering the photomultiplier electron optics.

© 2000 Optical Society of America

Full Article  |  PDF Article
More Like This
Suppression of afterpulsing in photomultipliers by gating the photocathode

Michael P. Bristow
Appl. Opt. 41(24) 4975-4987 (2002)

Influence of the photomultiplier tube spatial uniformity on lidar signals

Valentin Simeonov, Gilles Larcheveque, Philippe Quaglia, Hubert van den Bergh, and Bertrand Calpini
Appl. Opt. 38(24) 5186-5190 (1999)

Signal linearity, gain stability, and gating in photomultipliers: application to differential absorption lidars

Michael P. Bristow, Donald H. Bundy, and Anthony G. Wright
Appl. Opt. 34(21) 4437-4452 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved