Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Using the spectral asymmetry of TEA CO2 laser pulses to determine the Doppler-shift sign in coherent lidars with low frequency stability

Not Accessible

Your library or personal account may give you access

Abstract

We develop a method for determinating the relative positions of the lidar transmitter (LT) and the local oscillator (LO) frequencies in Doppler CO2 lidars. It uses the weak spectral asymmetry of TEA CO2 laser pulses, defined by a number of secondary peaks at the high-frequency side of the main spectrum peak. Depending on the sign of the beat frequency, these peaks may appear in the demodulated spectrum at either the high- or the low-frequency side. Each laser pulse spectrum is compared with reference spectra with two types of asymmetry, with the cross-correlation coefficients used as criteria. The performance of the method at different values of signal-to-noise ratio is analyzed numerically. The method is also applied to raw data from the lidar reference channel and demonstrates good performance at noise levels lower than the secondary peaks in the pulse spectrum or at a signal-to-noise ratio of ≥20 dB. Application of the pulse spectrum asymmetry for lidar frequency stabilization is analyzed. Lidar operation without frequency stabilization is considered as well. The method offers a simple Doppler lidar hardware for the creation of low-cost coherent lidars, velocimeters–rangefinders, etc.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
Frequency fidelity of a compact CO2 Doppler lidar transmitter

G. N. Pearson and B. J. Rye
Appl. Opt. 31(30) 6475-6484 (1992)

Pulsed heterodyne CO2 laser rangefinder and velocimeter with chirp correction

Leo H. Cohen, Alexander M. J. van Eijk, and Gerrit de Leeuw
Appl. Opt. 33(24) 5665-5670 (1994)

Coherent Doppler lidar signal spectrum with wind turbulence

Rod Frehlich and Larry Cornman
Appl. Opt. 38(36) 7456-7466 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.