Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-bounce optical arbitrary permutation network

Not Accessible

Your library or personal account may give you access

Abstract

The two-bounce free-space arbitrary interconnection architecture is presented. It results from a series of three-dimensional topological transformations to the Benes network, the minimum rearrangeable nonblocking network. Although functionally equivalent to the Benes network, it requires only two stages of global (spanning multiple chips) optical interconnections. The remaining stages of the modified Benes interconnection network are local and are implemented electronically (on individual chips). The two-bounce network is optimal in the sense that it retains the Benes minimum number of electronic switching resources yet also minimizes the number of optical links needed for global interconnection. Despite the use of higher-order k-shuffle (k > 2) global optical interconnects, the number of 2 × 2 switching elements is identical to the two-shuffle Benes network: there is no need for k × k crossbar switches for local interconnection at each stage. An experimental validation of the two-bounce architecture is presented.

© 1998 Optical Society of America

Full Article  |  PDF Article
More Like This
Sliding-banyan network performance analysis

Michael W. Haney and Marc P. Christensen
Appl. Opt. 36(11) 2334-2342 (1997)

Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors

Michael W. Haney, Marc P. Christensen, Predrag Milojkovic, Jeremy Ekman, Premanand Chandramani, Richard Rozier, Fouad Kiamilev, Yue Liu, and Mary Hibbs-Brenner
Appl. Opt. 38(29) 6190-6200 (1999)

Performance scaling comparison for free-space optical and electrical interconnection approaches

Michael W. Haney and Marc P. Christensen
Appl. Opt. 37(14) 2886-2894 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved