Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Two-wavelength lidar inversion algorithm for a two-component atmosphere

Not Accessible

Your library or personal account may give you access

Abstract

A method for the boundary-value determination of aerosol extinction profiles from backscatter lidar measurements is presented. Artificially generated lidar signals from two-component inhomogeneous model atmospheres are inverted with the information from two wavelengths (532 and 1064 nm) simultaneously. The solution for the vertical aerosol extinction profile is formulated with Klett’s far-end solution. The boundary value is expressed in terms of aerosol transmission along the lidar line according to Fernald’s solution of the lidar equation. The aerosol transmission is determined iteratively with a transcendental equation on the assumption that a linear relationship exists between the extinction coefficients at both wavelengths. Inversion calculations are applied to model atmospheres with range-dependent lidar ratios representing the growth of aerosol particles caused by increasing relative humidity in the planetary boundary layer. For the inversion constant lidar ratios are assumed that vary between 40 and 70 sr. The numerical procedure turns out to be stable enough to provide meaningful results even in cases of misestimated lidar ratios. The application of the method is of less use for misestimated background radiation and low aerosol concentrations.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Two-wavelength lidar inversion algorithm

Gerard J. Kunz
Appl. Opt. 38(6) 1015-1020 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.