Abstract

The implementation of a two-stage design process for the design of diffractive optical elements for array illumination is described. Results are presented for on-axis two-dimensional array illuminators for which this method is used. The final designs are theoretically within 5% of the calculated diffraction efficiency upper bound, and theoretical signal reconstruction error is below 1%. Experimental verification of the design theory is given, with experimental diffraction efficiencies within 4% of design values and signal reconstruction error below 6%.

© 1997 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Array generation with multilevel phase gratings

Susan J. Walker and Jürgen Jahns
J. Opt. Soc. Am. A 7(8) 1509-1513 (1990)

Efficient method for evaluation of the diffraction efficiency upper bound of diffractive phase elements

Guangya Zhou, Xiaocong Yuan, Philip Dowd, Yee-Loy Lam, and Yuen-Chuen Chan
Opt. Lett. 25(17) 1288-1290 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription