Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Collection of fluorescence from single molecules in microspheres: effects of illumination geometry

Not Accessible

Your library or personal account may give you access

Abstract

The collection of fluorescence from a molecule inside a sphere illuminated with single or counterpropagating plane waves is modeled. The results are applicable to microdroplet-based single molecule detection techniques and to some microparticle characterization techniques using inelastic emission. The large position-dependent variations in the fluorescence collection rate are primarily attributable to variations in the excitation intensity. With plane-wave illumination the collection from shadow regions is low because the incident energy is refracted by the droplet surface away from these regions. The average collection rate from molecules in shadow regions can be increased by illuminating with counterpropagating beams.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Modeling fluorescence collection from single molecules in microspheres: effects of position, orientation, and frequency

Steven C. Hill, Hasan I. Saleheen, Michael D. Barnes, William B. Whitten, and J. Michael Ramsey
Appl. Opt. 35(31) 6278-6288 (1996)

Real-time observation of single-molecule fluorescence in microdroplet streams

M. D. Barnes, N. Lermer, C.-Y. Kung, W. B. Whitten, J. M. Ramsey, and S. C. Hill
Opt. Lett. 22(16) 1265-1267 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.