Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Experimental measurements of estimator bias and the signal-to-noise ratio for deconvolution from wave-front sensing

Not Accessible

Your library or personal account may give you access

Abstract

Deconvolution from wave-front sensing (DWFS) has been proposed as a method for achieving high-resolution images of astronomical objects from ground-based telescopes. The technique consists of the simultaneous measurement of a short-exposure focal-plane speckled image, as well as the wave front, by use of a Shack–Hartmann sensor placed at the pupil plane. In early studies it was suspected that some problems would occur in poor seeing conditions; however, it was usually assumed that the technique would work well as long as the wave-front sensor subaperture spacing was less than r 0 (L/ r 0 < 1). Atmosphere-induced phase errors in the pupil of a telescope imaging system produce both phase errors and magnitude errors in the effective short-exposure optical transfer function (OTF) of the system. Recently it has been shown that the commonly used estimator for this technique produces biased estimates of the magnitude errors. The significance of this bias problem is that one cannot properly estimate or correct for the frame-to-frame fluctuations in the magnitude of the OTF but can do so only for fluctuations in the phase. An auxiliary estimate must also be used to correct for the mean value of the magnitude error. The inability to compensate for the magnitude fluctuations results in a signal-to-noise ratio (SNR) that is less favorable for the technique than was previously thought. In some situations simpler techniques, such as the Knox-Thompson and bispectrum methods, which require only speckle gram data from the focal plane of the imaging system, can produce better results. We present experimental measurements based on observations of bright stars and the Jovian moon Ganymede that confirm previous theoretical predictions.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Signal-to-noise ratio for astronomical imaging by deconvolution from wave-front sensing

Michael C. Roggemann and Byron M. Welsh
Appl. Opt. 33(23) 5400-5414 (1994)

Biased estimators and object-spectrum estimation in the method of deconvolution from wave-front sensing

Michael C. Roggemann, Byron M. Welsh, and John Devey
Appl. Opt. 33(24) 5754-5763 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.