Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Laser-induced-fluorescence detection of nitric oxide in high-pressure flames with AX(0, 2) excitation

Not Accessible

Your library or personal account may give you access

Abstract

Laser-induced fluorescence techniques have been used successfully for quantitative two-dimensional measurements of nitric oxide. The commonly applied D–X(0, 1) or A–X(0, 0) schemes are restricted to atmospheric-pressure flames and engines driven with gaseous fuels because of strong attenuation of the exciting laser beam by combustion intermediates. The properties of a detection scheme for which excitation in the nitric oxide A–X(0, 2) band was used were investigated. We discuss the advantages of the A–X(0, 2) system (excited at 247.95 nm) based on measurements in laminar premixed methane/air flames at 1–40 bars.

© 1997 Optical Society of America

Full Article  |  PDF Article
More Like This
Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. III. Comparison of A–X excitation schemes

Wolfgang G. Bessler, Christof Schulz, Tonghun Lee, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 42(24) 4922-4936 (2003)

Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A–X(0,1) excitation

Wolfgang G. Bessler, Christof Schulz, Tonghun Lee, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 42(12) 2031-2042 (2003)

Quantification of NO A–X(0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames

Christof Schulz, Volker Sick, Ulrich E. Meier, Johannes Heinze, and Winfried Stricker
Appl. Opt. 38(9) 1434-1443 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved