Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Methods for the deconvolution of defocused-image pairs recorded separately on two CCD cameras: application to particle sizing

Not Accessible

Your library or personal account may give you access

Abstract

An optoelectronic in-line imaging system for particle sizing is described. The images are scanned by two CCD cameras viewing the same object field that is illuminated with two pulses. One of the cameras is double exposed and the other is activated only during the second pulse. Two successive analogical subtractions between the video output signals gives the sign of the transverse velocity vector. Out-of-focus images are deconvolved with the assumption of a Gaussian point-spread function (PSF) whose spatial parameter σ increases with the defocusing distance z. In the case of low particle density, an algorithm based on the exploitation of the power spectral density is used to estimate the particle diameter. This method can be applied to the case of fast-moving particles (e.g., υ < 500 m/s). The accuracy of the size measurement is better than 10% in the diameter range 20–160 μm. The main result is that this accuracy is obtained with an amount of defocusing in the range [−2, 2] mm. Thus, the depth of field is significantly extended in comparison with a conventional microscopic imaging system.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Simultaneous measurement of diameter and position of spherical particles in a spray by an original imaging method

Jean-Bernard Blaisot and Michel Ledoux
Appl. Opt. 37(22) 5137-5144 (1998)

CCD camera response to diffraction patterns simulating particle images

M. Stanislas, D. G. Abdelsalam, and S. Coudert
Appl. Opt. 52(19) 4715-4723 (2013)

Instantaneous imaging of particle size and spatial distribution in two-phase flows

D. L. Hofeldt and R. K. Hanson
Appl. Opt. 30(33) 4936-4948 (1991)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.