Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effective medium theory applied to photonic crystals composed of cubic or square cylinders

Not Accessible

Your library or personal account may give you access

Abstract

Using the effective medium theory, I interpret the band-gap opening in photonic crystals with simple geometries as an interference effect between alternating layers of high and low optical indices and introduce the interesting concept of multidimensional quarter-wave stacks. The interpretation provides a simple insight into band-gap opening processes. For several simple crystal geometries, I analyze the variations of the gap width and depth with respect to the light polarization, the incident angle, and contrast inversion. For two- and three-dimensional structures composed of cubic and square cylinders, I show that the effective medium theory can be used to predict accurately the gap width, the central wavelength, and the attenuation at the central wavelength. The validity domain of the effective medium theory predictions is checked with results from rigorous computations.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms

Philippe Lalanne and Jean-Paul Hugonin
J. Opt. Soc. Am. A 15(7) 1843-1851 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved