Abstract

A simple laser-induced-fluorescence measurement technique for turbulent flame temperature and OH concentration measurement is proposed and successfully tested. The main idea is that a narrow-band tunable excimer laser beam (λ = 308 nm) is focused into a turbulent atmospheric-pressure nonpremixed flame. The OH molecule Q 1(3) (X 2Π υ″ = 0, A 2Σ+ υ′ = 0) transition is excited. By subsequent vibrational energy transfer, the distribution in the molecules’ upper electronic energy level (excited Σ+ state) is redistributed. By evaluating the spectrum of the broadband emission from the υ′ = 1 → υ″ = 0 and υ′ = 2 → υ″ = 1 bands with a full spectral fit, we were able to evaluate the temperature and the OH molecule density. The concurrent processes of quenching, vibrational energy transfer, and rotational energy transfer were taken into account in the evaluation process. The results were compared with numerical flame calculations and revealed good agreement. One problem with this new proposed application of laser-induced fluorescence is the self-absorption of the emitted light. This, however, is shown not to be serious, but it has to be checked carefully. The main advantages are a simple experimental setup and procedure, high signal intensity, and a simple and straightforward data evaluation method. Thus this measurement technique is suitable for turbulent flame temperature and OH concentration measurement, and it is an alternative to other well-established techniques that are much more complicated.

© 1996 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Picosecond planar laser-induced fluorescence measurements of OH A2 Σ+ (ν′ = 2) lifetime and energy transfer in atmospheric pressure flames

Frank C. Bormann, Tim Nielsen, Michael Burrows, and Peter Andresen
Appl. Opt. 36(24) 6129-6140 (1997)

Picosecond investigation of the collisional deactivation of OH A2Σ+(v′ = 1, N′ = 4, 12) in an atmospheric-pressure flame

Paul Beaud, Peter P. Radi, Dieter Franzke, Hans-Martin Frey, Bernhard Mischler, Alexios-Paul Tzannis, and Thomas Gerber
Appl. Opt. 37(15) 3354-3367 (1998)

Vibrational energy transfer in laser-excited A2+ OH as a flame thermometer

David R. Crosley and Gregory P. Smith
Appl. Opt. 19(4) 517-520 (1980)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription