Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Improved method of exponential sum fitting of transmissions to describe the absorption of atmospheric gases

Not Accessible

Your library or personal account may give you access

Abstract

For climate modeling and atmospheric research, such as investigations of global climate change, remote sensing of cloud properties, or the missing absorption problem in clouds, it is most important to describe adequately the absorption of radiation by atmospheric gases. An improved method for the exponential sum fitting of transmissions (ESFT) is developed to approximate this absorption accurately. Exponentials are estimated separately for any number of atmospheric-model layers, considering the pressure and temperature dependence of the absorption lines directly. As long as the error of the fit exceeds a limit of tolerance, the number of considered exponential terms is successively increased. The accuracy of the method presented yields a root-mean-square error of less than 0.03% for any atmospheric-model layer, whereas the commonly used one-layer techniques gain errors of up to 3% in the transmission functions for the upper layers. The commonly used ESFT methods consider only one atmospheric layer and introduce the pressure and temperature effects for the other model layers afterward.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved