Abstract

Transient photoconductivity measurements have been performed in situ during plasma-enhanced chemical vapor deposition of amorphous hydrogenated silicon by a contactless method that uses the change of the microwave reflection after laser pulse illumination. Through the use of the interference pattern of the amplitude of the transients of microwave reflection during the layer growth, the actual thickness of the amorphous film can be determined. In the case of crystalline silicon substrates, the change in the light absorption in the substrate modified by the growth of the amorphous layer is measured directly. An example of the optimization of antireflective layers on crystalline silicon substrates is shown. A good agreement is found between the experimental data and calculations of optical reflection and transmission on the multilayer structures.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hot-wire chemical vapor deposition low-loss hydrogenated amorphous silicon waveguides for silicon photonic devices

Swe Z. Oo, Antulio Tarazona, Ali Z. Khokhar, Rafidah Petra, Yohann Franz, Goran Z. Mashanovich, Graham T. Reed, Anna C. Peacock, and Harold M. H. Chong
Photon. Res. 7(2) 193-200 (2019)

Application of in situ ellipsometry in the fabrication of thin-film optical coatings on semiconductors

Marcel G. Boudreau, Steven G. Wallace, Ginutis Balcaitis, Sangeeta Murugkar, Harold K. Haugen, and Peter Mascher
Appl. Opt. 39(6) 1053-1058 (2000)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription