Abstract

The optics of x-ray concentration by tapered glass capillaries is analyzed in terms of a phase-space construction describing their transmission efficiency. The parameters defining the intensity gain are given in terms of parameters describing the x-ray source used, the capillary taper profile, and glass characteristics. We introduce some key concepts in understanding these devices: the extreme ray and a phase-space description of sources and optics. They are used to develop an analytical formulation for the optimum gain characteristics of generalized tapers for use with synchrotrons and other low-divergence sources. This general solution is solved further for the case of conical taper profile. The predictions of this theory are compared with the results of three-dimensional, ray-tracing simulations of x-ray concentration efficiency for conical and paraboloidal tapers.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simple method for focusing x rays using tapered capillaries

Edward A. Stern, Zwi Kalman, Aaron Lewis, and Klony Lieberman
Appl. Opt. 27(24) 5135-5139 (1988)

Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction

Chia-Hung Chu, Mau-Tsu Tang, and Shih-Lin Chang
Opt. Express 23(17) 21719-21729 (2015)

Dielectric totally internally reflecting concentrators

Xiaohui Ning, Roland Winston, and Joseph O’Gallagher
Appl. Opt. 26(2) 300-305 (1987)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription