Abstract

We propose the principle of a high-dynamic, quasi-distributed temperature sensor based on the behavior of the 1.13- and the 1.24-μm emission lines in erbium-doped silica fibers. The ratio of fluorescent intensity of these lines presents a temperature dynamic of more than 11 dB between room temperature and 600 °C. As the lower level of these transitions is not the fundamental, the emission lines are absorption free, and no dependence of the intensity ratio of the two lines has been observed, with power and wavelength pump variations permitting the realization of self-calibrated quasi-distributed sensors.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors

E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. W. Baxter
Appl. Opt. 34(34) 8019-8025 (1995)

Self-referenced point temperature sensor based on a fluorescence intensity ratio in Yb3+-doped silica fiber

Eric Maurice, Scott A. Wade, Stephen F. Collins, Gérard Monnom, and Greg W. Baxter
Appl. Opt. 36(31) 8264-8269 (1997)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription