Abstract

Research in the field of free-space optical interconnection networks has reached a point where simulators and other design tools are desirable for reducing development costs and for improving design time. Previously proposed methodologies have only been applicable to simple systems. Our goal was to develop a simulation methodology capable of evaluating the performance characteristics for a variety of different free-space networks under a range of different configurations and operating states. The proposed methodology operates by first establishing the optical signal powers at various locations in the network. These powers are developed through the simulation by diffraction analysis of the light propagation through the network. After this evaluation, characteristics such as bit-error rate, signal-to-noise ratio, and system bandwidth are calculated. Further, the simultaneous evaluation of this process for a set of component misalignments provides a measure of the alignment tolerance of a design. We discuss this simulation process in detail as well as provide models for different optical interconnection network components.

© 1995 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling and simulation methodology for digital optical computing systems

Ahmed Louri and Jongwhoa Na
Appl. Opt. 33(8) 1549-1558 (1994)

Scalable optical hypercube-based interconnection network for massively parallel computing

Ahmed Louri and Hongki Sung
Appl. Opt. 33(32) 7588-7598 (1994)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (30)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription