Abstract

We consider the reconstruction of a complex-valued object that is coherently illuminated and then viewed through a random-phase screen. The reconstruction involves a phase retrieval based on two intensity measurements. The first is a measurement of the long-exposure averaged intensity of a Fourier transform of the image; it yields full information on the magnitude of the object Fourier transform but no information on its phase. The second measurement is made with the image field modulated by an exponential function. This modulation has the effect of shifting the Fourier-transform function along the imaginary axis of the complex plane of its argument, thus making its intensity dependent on the unknown object phase. This method is capable of reconstructing the object except for an inherent ambiguity corresponding to a simple displacement. The effects of the noise arising from averaging over finite, instead of infinite, exposure times and the quantum noise were assessed. A computer-simulated example of reconstructing a two-dimensional object demonstrated that the reconstruction is robust. The reconstruction error increases with an increase of the variance of the random-phase function and with a decrease of its correlation length.

© 1994 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reconstruction of a complex-valued object in double-passage coherent imaging through a random-phase screen

Nobuharu Nakajima and Bahaa E. A. Saleh
Appl. Opt. 34(11) 1848-1858 (1995)

Reconstruction of a vibrating object from its time-averaged image intensities by the use of exponential filtering

Nobuharu Nakajima and Bahaa E. A. Saleh
Appl. Opt. 35(23) 4581-4588 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription