Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theoretical analysis of a rotating-disk partially confocal scanning microscope

Not Accessible

Your library or personal account may give you access

Abstract

Confocal scanning microscopy is widely used for three-dimensional (3-D) visualization of fixed specimens but has found only a limited 3-D reconstruction application for living specimens because the high intensity of the excitation often damages the specimen or causes the fluorescent dye to bleach. Computational optical-sectioning microscopy also suffers from drawbacks because nonconfocal 3-D imaging is fundamentally constrained by an artifactual elongation in the optical axis imposed by the so-called missing cone. We investigate the imaging properties of a new rotating-disk partially confocal scanning microscope (PCSM) that greatly reduces collection time by using multiple apertures for both excitation and detection, effectively working as many confocal microscopes in parallel. We show that this PCSM behaves as a hybrid microscope; near the in-focus plane it behaves near the theoretical optimum for confocal microscopy, and away from this plane its behavior approaches that of a nonconfocal microscope. We also show that the rotating-disk PCSM does not suffer from a missing cone. In fact, the optical transfer function of the theoretically optimal confocal microscope and the rotating-disk PCSM have practically the same bandpass in the spatial-frequency domain.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (33)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.