Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Radiance reflected from the ocean–atmosphere system: synthesis from individual components of the aerosol size distribution

Not Accessible

Your library or personal account may give you access

Abstract

We describe a method by which the aerosol component of the radiance at the top of the atmosphere (TOA) can be synthesized from the radiances generated by individual components of the aerosol size–refractive-index distribution. The method is exact in the single-scattering approximation. For regimes in which the single-scattering approximation is not valid, the method usually reproduces the aerosol contribution with an error ≲2–3% (and only rarely >3–4%) for Sun and viewing angles as large as 80° and 70°, respectively, and for aerosol optical thicknesses as large as 0.50. In the blue, where molecular scattering makes a dominant contribution to the TOA radiance, the percent error in the synthesized total radiance is significantly less than in the synthesized aerosol component and typically will be less than the radiometric calibration uncertainties of Earth-orbiting sensors. When the aerosol is strongly absorbing, the method can fail; however, the potential for failure is easy to anticipate a priori. An obvious application of our technique is to provide a basis for the estimation of aerosol properties with Earth-orbiting sensors, e.g., the Multiangle Imaging Spectroradiometer.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved