Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Asymmetric optical loop mirror: analysis of an all-optical switch

Not Accessible

Your library or personal account may give you access

Abstract

We present an analysis of the optical loop mirror in which a nonlinear optical element is asymmetrically placed in the loop. This analysis provides a general framework for the operation of a recently invented ultrafast all-optical switch known as the terahertz optical asymmetric demultiplexer. We show that a loop with small asymmetry, such as that used in the terahertz optical asymmetric demultiplexer, permits low-power ultrafast all-optical sampling and demultiplexing to be performed with a relatively slow optical nonlinearity. The size of the loop is completely irrelevant to switch operation as long as the required degree of asymmetry is accommodated. This is therefore the first low-power ultrafast all-optical switch that can be integrated on a single substrate.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
A novel fast optical switch based on two cascaded Terahertz Optical Asymmetric Demultiplexers (TOAD)

Bing C. Wang, Varghese Baby, Wilson Tong, Lei Xu, Michelle Friedman, Robert J. Runser, Ivan Glesk, and Paul R. Prucnal
Opt. Express 10(1) 15-23 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.