Abstract

The asymptotic daylight field in a homogeneous ocean is, like the absorption (a), scattering (b), and attenuation (c) coefficients and the volume scattering function (VSF), an inherent optical property (IOP) of the medium. A simple relationship in the spirit of the van de Hulst similarity relationships is developed from which the diffuse attenuation coefficient K of the asymptotic light field can be obtained from a, b, and the VSF with an error of <2%. In this relationship, the shape of the VSF is characterized by its asymmetry parameter g, whereas ω0 = b/c characterizes the other IOP’s. The relationship applies approximately to other quantities as well, particularly τx, which is the optical depth at which the downwelling irradiance attenuation coefficient Kd can be replaced by K with an error no greater than x%. Computations of τ5 and τ10 are presented as a function of g, ω0, and the incident light field, and it is shown that for overcast conditions Kd can be within 5% of K at depths at which the downwelling irradiance is greater than 50% of its value at the surface. Simulations of radiative transfer in vertically inhomogeneous waters reveal that for sufficiently large depth (z), the value of K(z) determined from the asymptotic theory that uses the values of the IOP’s at z is a good approximation to Kd(z). Thus our results suggest that in addition to being a pedagogically interesting concept, the asymptotic theory may actually be useful in ocean optics research. The influence of inelastic processes (fluorescence and Raman scattering) on K are briefly examined, and it is shown that for an ocean of pure sea water, i.e., no particles or fluorescent compounds, K(λ) ≈ 0.02 m−1 for λ ≳ 430 nm with little spectral variation.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
Marine asymptotic daylight field: effects of inelastic processes

Howard R. Gordon and Xin Xu
Appl. Opt. 35(21) 4194-4205 (1996)

Apparent optical properties of oceanic water: dependence on the molecular scattering contribution

André Morel and Hubert Loisel
Appl. Opt. 37(21) 4765-4776 (1998)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (31)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription