Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dynamics of electron-trapping materials for use in optoelectronic neurocomputing

Not Accessible

Your library or personal account may give you access

Abstract

An analytical model governing the dynamics of the trapped-electron density in electron-trapping materials (ETM’s) under simultaneous blue and near-IR illuminations is developed and studied in detail. Experimental results confirming the theoretical findings based on the model are presented, including a new method for experimentally determining a parameter of ETM’s, β, which describes the rate of decay of electron-trap density under constant IR illumination and which is obtained by measurement of the phase shift of the ETM response to IR illumination containing a sinusoidally modulated temporal component. Issues concerning the use of ETM’s as the synaptic connection weights in an optoelectronic neurocomputer are discussed; in particular, we propose a novel scheme for stabilizing the stored weight information in ETM’s during readout and learning; this scheme is based on the dynamic equilibrium of the trapped-electron density established by simultaneous blue and uniform IR illuminations. It is shown that ETM’s are ideally suited for realizing dense, modifiable synapses that have the wide dynamic range needed in implementing large-scale programmable optoelectronic neural networks of pulsed neurons.

© 1993 Optical Society of America

Full Article  |  PDF Article
More Like This
Dynamics of electron-trapping materials under blue light and near-infrared exposure: an improved model

Ramin Pashaie and Nabil H. Farhat
J. Opt. Soc. Am. B 24(8) 1927-1941 (2007)

Optical realization of bioinspired spiking neurons in the electron trapping material thin film

Ramin Pashaie and Nabil H. Farhat
Appl. Opt. 46(35) 8411-8418 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (45)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved