Abstract

The minimum detectable phase shift indicated in recent experimental reports of new linear spectrum-analysis techniques of optical interferometric vibration detection is established as the direct consequence of the 1/f noise voltage in the system components. The dynamic range and inaccuracy predicted by the simple theoretical model presented is in good agreement with experimental measurements. The conclusions of the analysis are compared with experimental reports of heterodyne shot-noise-limited optical systems. With this effective tool the generic class of spectrum-analysis techniques can be analyzed and relatively weighed to assess the effect of noise. This analysis is applicable to optical interferometry in general, although the experiments specifically involved fiber-optic modulators.

© 1992 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Synchronous phase detection for optical fiber interferometric sensors

I. Jeffrey Bush and Ronald L. Phillips
Appl. Opt. 22(15) 2329-2336 (1983)

Wide dynamic range homodyne interferometry method and its application for piezoactuator displacement measurements

José Henrique Galeti, Paula Lalucci Berton, Cláudio Kitano, Ricardo Tokio Higuti, Ronny Calixto Carbonari, and Emílio Carlos Nelli Silva
Appl. Opt. 52(28) 6919-6930 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription