Abstract

Rank annihilation-factor analysis is potentially the best method of analyzing fluorescence lidar returns because of the following capability. Rank annihilation can recognize a fluorescence signal of a component that is hidden by a large fluorescence background without a spectrum of that background. Theoretical models were developed to analyze the effectiveness of rank annihilation-factor analysis in the interpretation of lidar returns. Interferents such as background fluorescence, photon-counting noise, sky radiance, and atmospheric extinction degraded the lidar-return spectra in numerical simulations. The rank annihilation-factor analysis detection algorithm was most severely biased by the combination of photon-counting noise and sky radiance. Rank annihilation calculations were also compared with calculations done by two other detection algorithms: finding peak wavelengths and the least-squares technique. Rank annihilation is better than both techniques.

© 1992 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Estimating random errors due to shot noise in backscatter lidar observations

Zhaoyan Liu, William Hunt, Mark Vaughan, Chris Hostetler, Matthew McGill, Kathleen Powell, David Winker, and Yongxiang Hu
Appl. Opt. 45(18) 4437-4447 (2006)

Atmospheric extinction effect on analysis of UV fluorescence signatures

David L. Rosen and James B. Gillespie
Appl. Opt. 28(20) 4260-4261 (1989)

Lidar detection algorithm for time and range anomalies

Avishai Ben-David, Charles E. Davidson, and Richard G. Vanderbeek
Appl. Opt. 46(29) 7275-7288 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription