Abstract

We have previously shown that interferometry may be used to detect the phase shift of a focused beam caused by a small particle [ Appl. Phys. Lett. 55, 215 ( 1989)]. This is a useful method for detecting small particles in liquids and with the ability to distinguish bubbles from particles. In that measurement, however, only the phase shift, given by the real part of the forward-scattered field, was detected. By measurement of both the real and imaginary parts of the forward-scattered field, additional information is obtained so that the refractive index and size of a nominally spherical particle may be determined. This measurement is analogous to ellipsometric measurements of thin films, where knowledge of both a phase and amplitude quantity allows one to determine a thin-film refractive index and thickness. Using an optical system based on Nomarski optics, we have shown that it is possible to distinguish four classes of particulate material in liquids within the noise constraints of our system. Thus low dielectrics (e.g., SiO2), moderate dielectrics (e.g., Si3N4), bubbles, and metals–absorbers (e.g., Al, C) can be differentiated as well as sized more accurately.

© 1991 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Refractive-index measurements for the correction of particle sizing methods

Norbert Roth, Klaus Anders, and Arnold Frohn
Appl. Opt. 30(33) 4960-4965 (1991)

Particle Sizing by Means of the Forward Scattering Lobe

J. Raymond Hodkinson
Appl. Opt. 5(5) 839-844 (1966)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription