Abstract

The heterodyne detection efficiency for a 1-μm coherent atmospheric backscatter lidar was numerically calculated using a Monte Carlo technique which included a simple model for the effects of atmospheric turbulence. The results show that the heterodyne detection efficiency of a single-element detector is severely reduced by the effects of atmospheric turbulence, but that the use of an appropriate sized, multiple-element heterodyne detector array can overcome these effects. In addition, the statistical fluctuation (signal-to-noise ratio) of the lidar signal was also calculated and showed that the use of a heterodyne detector array can increase the accuracy to that for direct detection.

© 1991 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Heterodyne Doppler 1-μm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence

Kin Pui Chan, Dennis K. Killinger, and Nobuo Sugimoto
Appl. Opt. 30(18) 2617-2627 (1991)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription